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In this era of information technology, the discipline of 
biomathematics (mathematical biology) is facing rapid 
development. In theoretical biology, mathematics has been 
used to formulate hypotheses about complex biological 
systems. Mathematics, computational science and 
bioinformatics provide tools to aid experimental and 
observational biologists. The data driven -omics (genomics, 
transcriptomics, proteomics, etc.) also benefit from 
mathematical techniques. The outcomes of mathematical 
models can guide discoveries and can help minimize 
cumbersome trial-and-error experiments. One of the 
progressive applications of biomathematics is in the field of 
epigenetics, particularly in modeling cell-fate specification.  

In this brief review, we use mind maps to guide our 
discussion. Mind mapping is a novel way of writing reviews 
and organizing the multifaceted ideas in a fast-paced and 
broad field, such as epigenetics. Every year, new quantitative 
and qualitative investigations are published in different 
journals [1-104]. Visual diagrams, such as mind maps, can aid 
researchers to summarize the important results and explore 
the trending topics. We start by assessing the fundamental 
concepts in epigenetics, then branching out to deliberate on 
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Figure 1. The focus in this brief review is mathematical 
modeling in epigenetics of cell-fate specification. These four 
keywords (epigenetics, WaddingtonÕs landscape, stem cell & 
cell-fate specification, and mathematical models) lead to multitude 
of search results in literatures. 
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new outcomes and future directions. Here we focus on 
mathematical modeling in epigenetics of cell-fate 
specification (Fig. 1). 

Cell-fate specification is one of the important processes 
studied in epigenetics (Fig. 2). Stem cells undergo cell 
division to proliferate as stem cells (self-renewal) or to 
differentiate towards specific family/lineage of cell types 
(cell differentiation). The cells undergoing cell 
differentiation “decide” their future cell type (cell-fate 
specification or determination) based on the associated gene 
regulation and cell signaling. Stem cells are classified based 
on its potency, that is, the ability to differentiate to a number 
of types. Currently, pluripotency (ability to differentiate to 
almost all cells) and multipotency (ability to differentiate to 
many cells of related lineages) are buzzwords in this area of 
study. Pluripotent and multipotent stem cells are important in 
the formation of tissues and organs. Embryonic stem cells 
and induced pluripotent stem cells (iPSCs) are common 
examples of pluripotent cells. The umbilical cord blood, 
adipose tissue and bone marrow are also sources of 
pluripotent stem cells. We are not going to elaborate the 
biology of stem cells since their fundamental aspects 
including cell differentiation (e.g., transcription, chromatin 
remodeling, histone modification, DNA methylation, 
epigenetic clock, epigenetic memory, OCT4-SOX2- 
NANOG, polycomb repressive complex) are now available 
in standard biology books [8] as well as from various review 
and research articles [1-30].  

For their discovery of iPSCs, Shinya Yamanaka and John 
Gurdon were awarded the Nobel Prize in 
Physiology/Medicine [101]. These iPSCs are proof that mature 
specialized cells can be reprogrammed back to 
undifferentiated states --- the process known as 
dedifferentiation. Several methods for acquiring iPSCs and 
for cellular engineering have been developed, such as 
transcription-factor viral transduction, footprint-free nonviral 
methods, reprogramming with small molecules, cell fusion, 
and nuclear transfer [4,6,7,11,13,21,22,25,27]. The area of cellular 
reprogramming has numerous successful studies but some 
were subjected to controversies. Scientific misconduct 
resulted in the retraction of published papers on 
stimulus-triggered acquisition of pluripotency (STAP) [102]. 

Dedifferentiation as well as transdifferentiation (process 
of switching to other cell lineage) are already popular topics 
in biomedicine, biotechnology and bioengineering (Fig. 3). 
Future studies can learn from some plants and animals that 
undergo normal body regeneration [28,29] --- which implies 
that self-renewal by stem cells are vigorously effective to 
cure degenerative diseases and injuries. The field of stem cell 
research is in its golden era because of the vast research 
results available today. Stem cells promise extensive 
therapeutic applications in regenerative medicine, such as 
possible treatment of neurodegenerative disorders (e.g., ALS, 
Parkinson’s and Alzheimer’s), cardiovascular diseases, 
osteoarthritis, diabetes, wounds, and vision impairment 
[1,9,10,14,16,18,19,24]. Stem cells also become an interest in  
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Figure 2. Mind map with “stem cells and cell-fate specification” as root. 
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dermatology [5]. One of the most important applications of 
stem cells is in cancer research, which is greatly influenced 
by discoveries in epigenetics [2,33,48,65,66,74,94]. Further studies 
on these applications are underway to ensure the safety and 
efficiency of stem cell therapies [1-7,9-26,30,35,48,52,53,55,58]. 

Waddington’s epigenetic landscape (named “creode”) is 
one of the cartoon diagrams that has been quantified to 
portray the dynamics of cell-fate specification [31-44] (Fig. 4 
and 5). When a stem cell undergoes cell division, three 
possibilities can happen to the daughter cells: (i) both are 
identical to the parent cell, (ii) both are already differentiated, 
or (iii) one is identical to the original and the other already 
differentiated. Cells that undergo differentiation have several 
cell lineages to choose from, but the probability of their cell 
fates are based on some pattern formation. The creode by 
Waddington illustrates the paths (lineages) that a cell might 
take (Fig. 4). In Waddington’s model, cell differentiation is 
depicted by a ball descending a landscape of hills and 
valleys. The valleys where the ball settles without rolling 
further can be regarded as “attractors” that represent cell 
types. The hill ridges that separate the valleys portray the 
boundaries between cell lineages and prevent (up to some 
level) switching. The height of hills and depth of valleys 
determine the potential of cell differentiation (similar to 
gravitational potential).  

Gene regulatory networks determine the topography of the 
epigenetic landscape. A pluripotent cell has high network 
entropy because it can differentiate towards many cell 
lineages [32,34]. The topography of Waddington’s landscape is 
said to be dynamic [32]. Changes in the topography may be 
part of normal processes or may entail mutations. This is the 
reason why epigenetic landscape has been hypothesized to 
have a connection with the fitness landscape in evolutionary 
biology [32,73]. Epigenetics is believed to affect 
transgenerational inheritance (transferred from parents to 
offspring) [103]. The dynamic topography may also dictate 
cells to differentiate normally, become cancer cells (due to 
aberration in gene regulation), or undergo apoptosis/cell 
death [33]. Currently, there are many variations of the 
landscape, such as landscape with circular paths [23,32,35]. The 
epigenetic landscape is not necessarily linear and 
one-directional because cells are plastic and reprogrammable. 

The goal of mathematical modeling is to help solve 
emerging problems in biology and allied fields by offering 
quantitative techniques, analysis and solutions (Fig. 6 and 
Box 1). Biomathematicians aim to solve biological problems 
by translating biological ideas (e.g., ‘cartoon’ diagrams in 
biology) into the language of mathematics, then interpreting 
the mathematical results back to biological terms. Biological 
systems are too complex to be investigated as they are, where 
capability of current computational tools as one of the major 
limiting factors. Abstract mathematical models can be used 
to focus on a specific biological system or phenomenon. 
These models can then be manipulated and analyzed. For 
example, mathematical algorithms and in silico experiments 
are being used in drug discovery, especially for personalized 
medicine [48,65,66,71]. The logical structure in mathematics can 
represent physical phenomena and interacting systems in 
nature. In many cases, modeling and simulations can provide 
the necessary calculations to propose answers to the 
questions of biologists. Mathematical predictions and 
experiments propose that gene expressions can be influenced 
by controling the efficiency of transcription, degradation rate 
of proteins, amount of exogenous stimuli or inhibitor, 
strength and direction (from activation to repression or 
vice-versa) of protein-protein interaction, and kinetics of 
protein auto-activation [32,33,61]. However, it should be noted 
that mathematical models have limitations. Models are 
abstraction of real world phenomena, and the models are as 
good as the assumptions used. A useful model must capture 
the elements of reality with acceptable accuracy. 
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Figure 3. Cell-differentiation. Colored circles represent genes. The 
sizes of the circles determine lineage bias. Priming is represented by 
colored circles with equal sizes. The largest circle governs the 
possible phenotype of the cell. Differentiated cells lose the ability to 
self-renew. 
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The commonly used mathematical techniques in biology 
are statistics, probability theory, stochastic processes and 
simulations (e.g., Markov Chain, kinetic Monte Carlo), 
dynamical systems, differential equations (ordinary, delay, 
partial, stochastic), linear algebra, abstract algebra, graph and 
network theory, game theory, optimization (e.g., 

mathematical programming) and metaheuristics (e.g., genetic 
algorithm, neural networks), and automata. However, the 
techniques are not limited to this list. We can formulate 
hybrid models employing different mathematical techniques 
or we can use techniques from other branches of 
mathematics that are not usually employed (or not have been 
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Figure 4. Epigenetic landscape. Left: WaddingtonÕs epigenetic landscape based on the original illustration in [31]. The cells 
represented by the balls roll down a terrain of hills and valleys. Right: Phase portrait of a differential equation model with a 
fixed set of parameter values (e.g., see Box 1) that portrays a scenario of ÔattractionÕ in the epigenetic landscape. 
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used yet) in biology to discover novel dynamics --- this is 
called the Blue Ocean strategy. For example, we can try 
using non-Euclidean geometries to represent the epigenetic 
landscape, and see if this can give us new perspectives. 
These different but not necessarily conflicting perspectives 
are common in epigenetics. For instance, the attractor in 
Waddington’s landscape have several mathematical 

interpretations --- it can be an equilibrium point, a strange 
chaotic attractor, noisy attractor, or a region with cloud of 
states converging together [32,69,74,87,92-94,98]. Indeed, 
mathematical modelers need to have two important qualities: 
critical thinking and creativity. For general details about 
various mathematical models in epigenetics and gene 
regulation, see [45-60].   

Figure 6. Visual diagram showing the basic steps of the modeling process [49,59]. Here we use the model in Box 1 as example [32,61]. 
Mathematical modeling is a continuous process (spiral). Models are continuously being improved to capture the real behavior of the 
biological system. 
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In line with our discussion about different perspectives, 
one may opt to extend the current mathematical studies in 

epigenetics. Simple models are useful, and complicated 
models may have disadvantages. However, if possible, we  
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Simple model Complex model 
Minimal Rigorous 

Linear Nonlinear 
Deterministic Stochastic 

Equilibrium Non-equilibrium 
Bistable Multistable 

Simple oscillations Hybrid, possibly chaotic, oscillations 
Temporal Spatio-temporal 

Discrete or continuous Hybrid dynamics 
Unicellular Multicellular 
Single level Multi-level (multi-scale) 

Low dimensional High dimensional 
Single rate Multi-rate (fast and slow interactions) 

Symmetric interaction Asymmetric interaction 
Asymptotic (infinite) dynamics Finite-time and transient dynamics 

Intra-cellular Inter-cellular + environment 
No feedback system Multi-feedback system 

Reductionist thinking Systems thinking 

want to include more realistic assumptions in a model to 
improve its robustness in understanding the full mechanisms 
of cell-fate specification and its associated diseases, without 
sacrificing reliability, usefulness and validity of the model 
results. Table 1 shows the directions that future researches 
may take. Researchers, especially systems and synthetic 
biologists, have already started extending simple models to 
become more multifaceted. Still, there are more that can be 
explored in the realm of mathematical modeling that could 
help us uncover novel dynamics. For example, the usual 
ordinary differential equation (ODE) models can be extended 
to include stochasticity, delay and spatial aspects. One may 
use stochastic DE, delay DE and partial DE, but one may use 
intensive Monte Carlo individual/agent-based simulations. 
Moreover, perturbation and sensitivity analyses should 
always be done to check the robustness of the model and of 
the tool for analysis against instabilities and noise. 
Bifurcation analysis can also be performed to examine how 
the behavior of the biological system (e.g., gene regulation) 
changes with parameter values.  

Models are not the ultimate goal of biomathematics 
research. Both simple and sophisticated models have similar 
goals --- to solve biological problems using mathematics. We 
also need to answer several assessment questions during the 
modeling process, such as  

Is my goal to describe only the biological systems or to 
make predictions?;  

Do I need to use mechanistic models or phenomenological 
models?; and  

Am I modeling correlations or causality?  

Moreover, most of the time, a single model is insufficient to 

describe a real and complex biological phenomenon. Several 
models may be employed in different modules of the 
research project. For example, in network pharmacology 
[65,66,71], we use bioinformatics algorithms to search pool of 
data for the factors that define a disease. Then, we use 
different models to formulate and optimize drugs to target 
those factors and reduce side effects. 

Close collaboration of biomathematicians (applied 
mathematicians, physicists, computational chemists and 
bioengineers) with biologists are important in making 
successful exploration of epigenetics. We need to relate 
interdisciplinary studies at the molecular level to the 
dynamics at the cellular level, and the cellular level to the 
development of tissues and organs --- just like the goal of 
physicists in uniting the general theory of relativity to 
quantum theory. For example, we need to answer the 
question: How can we relate Waddington’s landscape to the 
spatial pattern formation of tissues and of the whole 
organism? Likewise, future studies can focus from a 
generalist model to a specialized model, such as models 
describing the epigenetics of certain organs (e.g., brain, skin, 
heart), of certain species (e.g., microorganisms, animals, 
plants), or of certain diseases (e.g., diabetes, Parkinson’s 
disease, cancer). However, unless the outcome of a 
mathematical model is confirmed experimentally, it will stay 
as a hypothesis. 

This brief review is clearly not enough to present all the 
significant breakthroughs in epigenetics of cell-fate 
specification. However, the advantage of mind mapping is 
that the maps can be extended to include more ideas not 
mentioned in this review. The definition of “epigenetics” has 
evolved in recent years. While working definition is 
important, we cannot be restricted by it because epigenetics 
is evolving and progressing [3,100]. There are several groups 
that are at the forefront of mathematical modeling and 
cell-fate specification research, such as the group of Sui 
Huang [104]. Additional references about mathematical 
modeling are listed here [61-99]. 
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